Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155700

RESUMO

The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Repetição de Anquirina Projetadas , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia
2.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37100053

RESUMO

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mutagênese , Mutação , Oxirredução , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
PLoS Pathog ; 18(2): e1010326, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176125

RESUMO

Helicobacter pylori colonizes half of the global population and causes gastritis, peptic ulcer disease or gastric cancer. In this study, we were interested in human annexin (ANX), which comprises a protein family with diverse and partly unknown physiological functions, but with a potential role in microbial infections and possible involvement in gastric cancer. We demonstrate here for the first time that H. pylori is able to specifically bind ANXs. Binding studies with purified H. pylori LPS and specific H. pylori LPS mutant strains indicated binding of ANXA5 to lipid A, which was dependent on the lipid A phosphorylation status. Remarkably, ANXA5 binding almost completely inhibited LPS-mediated Toll-like receptor 4- (TLR4) signaling in a TLR4-specific reporter cell line. Furthermore, the interaction is relevant for gastric colonization, as a mouse-adapted H. pylori increased its ANXA5 binding capacity after gastric passage and its ANXA5 incubation in vitro interfered with TLR4 signaling. Moreover, both ANXA2 and ANXA5 levels were upregulated in H. pylori-infected human gastric tissue, and H. pylori can be found in close association with ANXs in the human stomach. Furthermore, an inhibitory effect of ANXA5 binding for CagA translocation could be confirmed. Taken together, our results highlight an adaptive ability of H. pylori to interact with the host cell factor ANX potentially dampening innate immune recognition.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Anexinas/metabolismo , Mucosa Gástrica , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , Lipídeo A , Lipopolissacarídeos/metabolismo , Camundongos , Neoplasias Gástricas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
4.
Mol Microbiol ; 116(3): 794-807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121254

RESUMO

Type IV secretion of effector proteins is an important principle for interaction of human pathogens with their target cells. The corresponding secretion systems may transport a multitude of effector proteins that have to be deployed in the respective spatiotemporal context, or only a single translocated protein, as in the case of the CagA effector protein produced by the human gastric pathogen Helicobacter pylori. For a more detailed analysis of the kinetics and mode of action of CagA type IV secretion by H. pylori, we describe here, a novel, highly sensitive split luciferase-based translocation reporter which can be easily adapted to different end-point or real-time measurements. Using this reporter, we showed that H. pylori cells are able to rapidly inject a limited amount of their CagA supply into cultured gastric epithelial cells. We have further employed the reporter system to address the question whether CagA has to be unfolded prior to translocation by the type IV secretion system. We showed that protein domains co-translocated with CagA as protein fusions are more readily tolerated as substrates than in other secretion systems, but also provide evidence that unfolding of effector proteins is a prerequisite for their transport.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Helicobacter pylori/metabolismo , Transporte Proteico , Desdobramento de Proteína , Sistemas de Secreção Tipo IV/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Cinética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estômago/microbiologia
5.
Mol Microbiol ; 116(3): 841-860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164854

RESUMO

Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.


Assuntos
Aminoácidos/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Ácido Cítrico/metabolismo , Glucose/metabolismo , Helicobacter pylori/metabolismo , Acetilcoenzima A/metabolismo , Ácido Aspártico/metabolismo , Metabolismo dos Carboidratos , Ciclo do Ácido Cítrico , Ácido Glutâmico/metabolismo , Gliceraldeído/metabolismo , Glioxilatos/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Malatos/metabolismo , Redes e Vias Metabólicas , Ácido Succínico/metabolismo
6.
Front Cell Infect Microbiol ; 10: 602958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392108

RESUMO

Type IV secretion systems are protein secretion machineries that are frequently used by pathogenic bacteria to inject their virulence factors into target cells of their respective hosts. In the case of the human gastric pathogen Helicobacter pylori, the cytotoxin-associated gene (Cag) type IV secretion system is considered a major cause for severe disease, such as gastric cancer, and thus constitutes an attractive target for specific treatment options against H. pylori infections. Here, we have used a Cag type IV secretion reporter assay for screening a repurposing compound library for inhibitors targeting this system. We found that the antitumor agent cisplatin, a platinum coordination complex that kills target cells by formation of DNA crosslinks, is a potent inhibitor of the Cag type IV secretion system. Strikingly, we found that this inhibitory activity of cisplatin depends on a ligand exchange reaction which incorporates a solvent molecule (dimethylsulfoxide) into the complex, a modification which is known to be deleterious for DNA crosslinking, and for its anticancer activity. We extended our analysis to several analogous platinum complexes containing N-heterocyclic carbene, as well as DMSO or other ligands, and found varying inhibitory activities toward the Cag system which were not congruent with their DNA-binding properties, suggesting that protein interactions may cause the inhibitory effect. Inhibition experiments under varying conditions revealed effects on adherence and bacterial viability as well, and showed that the type IV secretion-inhibitory capacity of platinum complexes can be inactivated by sulfur-containing reagents and in complex bacterial growth media. Taken together, our results demonstrate DNA binding-independent inhibitory effects of cisplatin and other platinum complexes against different H. pylori processes including type IV secretion.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Antígenos de Bactérias , Proteínas de Bactérias/genética , Cisplatino/farmacologia , Humanos , Platina , Sistemas de Secreção Tipo IV
7.
PLoS One ; 13(9): e0198704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231023

RESUMO

Heavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker's yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.


Assuntos
Deleção de Genes , Glutationa Peroxidase/genética , Metais Pesados/metabolismo , Príons/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Regulação Fúngica da Expressão Gênica , Glutationa Peroxidase/metabolismo , Inativação Metabólica , Príons/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
8.
Comput Biol Chem ; 71: 180-187, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29112936

RESUMO

The production of anti-Zika virus (ZIKV) therapeutics has become increasingly important as the propagation of the devastating virus continues largely unchecked. Notably, a causal relationship between ZIKV infection and neurodevelopmental abnormalities has been widely reported, yet a specific mechanism underlying impaired neurological development has not been identified. Here, we report on the design of several synthetic competitive inhibitory peptides against key pathogenic ZIKV proteins through the prediction of protein-protein interactions (PPIs). Often, PPIs between host and viral proteins are crucial for infection and pathogenesis, making them attractive targets for therapeutics. Using two complementary sequence-based PPI prediction tools, we first produced a comprehensive map of predicted human-ZIKV PPIs (involving 209 human protein candidates). We then designed several peptides intended to disrupt the corresponding host-pathogen interactions thereby acting as anti-ZIKV therapeutics. The data generated in this study constitute a foundational resource to aid in the multi-disciplinary effort to combat ZIKV infection, including the design of additional synthetic proteins.


Assuntos
Desenho de Fármacos , Peptídeos/farmacologia , Proteínas Virais/antagonistas & inibidores , Zika virus/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...